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An examination of the mean-square displacement function and of a continued fraction 
approximation to it shows that simple approximations are available which involve only 
square-root functions. Comparative data are presented. 

INTRODUCTION 

McLachlan and Foster [ 1 ] and Morita and Frood [2] have drawn attention to the 
importance of the anharmonic, mean square, displacement function 

.I”, x2 exp[-W(x)1 do 
(x2)= j”?, exp[+V(x)] dx (1) 

where /I = l/kT and 

V(x) = ax* + bx4. (2) 

Morita and Frood have shown [2] that (x2) can be expressed in the form of a 
continued fraction 

(x2> = W/W W (3) 

where 

z = b/pa* and A(Z) = l/l + 32/l + 52/l + 7z/l •t .** . (4) 

These authors provide a graph of A(z) vs z which covers the range z = l,..., 10. They 
11so imply that the continued fraction (4) provides a simple method for 
:alculating A(z). 

While this statement is true for relatively small values of z, it is untrue when z is 
appreciably greater than unity site the continued fraction (4) converges very slowly 
n this region. 

The purpose of this paper is to provide an asymptotic expression for A(z) and also 
o exhibit two very simple approximating functions for A(z) which cover the whole 
ange O<z< co. 
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THE ASYMPTOTIC APPROXIMATION 

Making the substitution y = x(/%)“~, Eq. (1) reduces to 

whence 

2 l? y2e-Z-“2Yze-Y4 dy 

Expanding e-z-‘f2y2 in powers of y, and using the well-known integral 

e 

Eq. (5) becomes 

(5) 

where the negative signs refer to the. case where a in (2) is positive while the positive 
signs apply for negative a. Thus, as z --) co, 

n(z>-t 22-(f) = 0.675978 

m lb \/5 
(7) 

Series (6) forms a convenient means of calculating accurate values of A(z) for z > 1. 
Three or four terms provide four place accuracy. 

It is simple to extend the foregoing analysis to generate moments of order 2n, the 
same procedure leads to 

(x2nj = 1 (0” y2’e-z-“2y*e-y4 dy 
z”‘~(u~)” jr e-z-“ryze-Y4 dy 

and thus to 

(x2”) = 
r”“;Clb)” 

r(q+(E3\/;+r(~)/2!z~... 

l-(f) 7 l-(i)/\/; + z-($)/2! z T * * * 
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Two APPROXIMATIONS 

The limiting asymptotic form of n(z) provided by (7) suggests approximations of 
the type 

l(z)= i: ai 
i=l &-Tq (8) 

Two such approximations have been derived (n = 2 and n = 3). First we note that as 
a series the continued fraction is 

A(Z) = 1 - 32 + 24z* - 297z3 + 4896z4 - 100,278~~ + . . . (9) 

For the two-term approximation we chose a,, oi so that 

A(O) = 1, l’(O) = -3, A”(0) = 48, A(co) + 0.675978/& 

These lead to 

$+$=6 

$t$=64 

a, t a2 = 0.675978 (=K say) 

To solve these equations we note that 

whence 

6 
1 

--=664 
al . a2 

4gain, 

(11) 
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whence 

$+$=K $+; -1 
( 1 

Thus, from (1 l), 

(12) 

Since 

2 2 
$+-$= ;+; -- 

( 1 a1 a2 

Eqs. (10) and (12) are readily solved for (l/al + l/a,) and l/a,a, and thence a,, a2 
and a,, a, can be determined. The result is 

k(Z) !z 
0.140082 0.535896 

dz + 0.086573 
+ 

z + 1.046281 
(13) 

A comparison with the values calculated from the continued fraction is exhibited in 
Table I. 

The value for z = 10 required 961 terms of the continued fraction for four-place 
accuracy. That for z = 100 required 7905 terms to produce the result as 0.06. The 
value given was obtained by Romberg integration using Eq. (5). This method will 
procude eight-place accuracy (if desired!) without difficulty. 

For the three-term approximation a more sophisticated approach is needed, and the 
following is a sketch of a method which is applicable to any number of terms. 

TABLE I 

Exact and Approximated Values of n(z) 

a z: 0 .OOOl .OOl .Ol .l 1.0 10 100 

Exact 1 .99970 .99702 .9721 ,818 .470 .189 .066 
Eq. (13) 1 .99970 .99702 .9722 .825 ,509 .205 .067 
Ex. (16) 1 .99970 .99702 .9721 .819 .489 .203 .067 
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First we note that, for the three-term case, the equations are 

Assume that l/a i, I/a& l/a: are the roots of 

x3 + Ix2 + “” + n = 0 

This equation also implies 

(14) 

UiX 3+p + ailx2+P + aimx’+p + ainxP = 0 

Whence, using the original equations, 

w,+lo,+mw,+nw,=O 

w, + lo, + mo, + no, = 0 
(15) 

If CO-, were known, a third equation would be available and the system could be 
solved directly to give I, m, and n. Equation (14) could then be solved to give l/a:, 
l/a:, l/a:; however, w-, is unknown. 

Equation (15) can be solve to give I, m in terms of n; the solution is of the form 

l=en+f 

m=gn+h 

where e, f, g, and h are numerical constants. These values of I and m are now 
substituted into (14) and the roots are computed for a range of negative values of n. 
Negative because all roots must be real and positive. 

In practice the roots are well separated and relatively insensitive to n. Having 
computed the roots, the values of the residual 

are calculated for each set of roots and that set is selected which minimizes R. These 
roots are used, with the first three members of the defining set of equations, to 
evaluate approximate values of a,, a,, a3, and the last step of the process is to use 
the six approximate values of a,, a,, a3, l/a,, l/a,, l/a, as starting values in a 
classical iterative procedure [3] to produce accurate values of these parameters. It 
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turns out that, in the three-term case, only two iterations are needed to produce six- 
place accuracy. The result is 

/l(z) 
0.012583 0.220347 0.443048 

x + + 
z + 0.043935 z + 0.135207 z + 1.690875 

(16) 

The accuracy is somewhat better than that provided by the two-term approx- 
imation (13), the actual values being shown in the last line of Table I. 

OBSERVATIONS AND CONCLUSION 

It will be seen that the simple approximations involve errors of about 10% in the 
range z = 1 to 10. If these are deemed to be unacceptable, the series (6) and (9) are 
simple to code on a digital computer and converge with sufficient rapidity to provide 
high accuracy if this is wanted. Alternatively, Romberg integration applied directly to 
(5) is also rapidly convergent and is a good method to use if six decimal-place 
accuracy is wanted. Finally, it may be remarked that although the author has not had 
occasion to use the moment functions in further manipulations which require closed 
analytical forms, colleagues have stated that further operations which involve 
differentiations and integration are sometimes needed. In these the simple surd 
expressions (13) and (16) seem to offer some utility. 

The same remark applies to the series (9) which gives good convergence for small 
values of z. 
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